Cycloadditionen von 6H-1,3,4-Oxadiazin-6-onen (4,5-Diaza- α -pyronen), 10¹⁾

Reaktionen von Bicyclo[2.1.1]hexenen mit 6*H*-1,3,4-Oxadiazin-6-onen und dynamische Effekte in einem neungliedrigen, überbrückten, α , β -ungesättigten Enollacton²⁾

Horst Reuchlein^a, Arno Kraft^a, Manfred Christl^{*a}, Eva-Maria Peters^b, Karl Peters^b und Hans Georg von Schnering^b

Institut für Organische Chemie der Universität Würzburg^a, Am Hubland, W-8700 Würzburg

Max-Planck-Institut für Festkörperforschung^b, Heisenbergstraße 1, W-7000 Stuttgart 80

Eingegangen am 21. Dezember 1990

Key Words: 1,3,4-Oxadiazin-6-ones / Diels-Alder reactions / Enol lactones / Lactone conformations / Line-shape analysis

Cycloadditions of 6H-1,3,4-Oxadiazin-6-ones (4,5-Diaza- α -pyrones), 10¹⁾. – Reactions of Bicyclo[2.1.1]hexenes with 6H-1,3,4-Oxadiazin-6-ones and Dynamic Effects in a Nine-Membered, Bridged, α , β -Unsaturated Enol Lactone²⁾

The reactions of bicyclo[2.1.1]hexene (2) and its tricyclic derivative 3 with 2,5-diphenyl-6*H*-1,3,4-oxadiazin-6-one (1 a) gave the 3,4-dihydro- α -pyrones 6 and 7, respectively. In contrast, the methyl phenyloxadiazinonecarboxylate 1 b and 2 afforded a mixture of the nine-membered, bridged, α , β -unsaturated enol lactone 11 and the β -lactone 12 in a ratio of about 10:1. Olefin 3 reacted with 1 b to furnish small amounts of the bridged derivative 16 of 11 as well as the 2:1 product 14, a saturated δ -lactone. Unlike 16, enol lactone 11 reveals dynamic phenom-

Die Reaktion von 2,5-Diphenyl-6H-1,3,4-oxadiazin-6-on (1a) mit Norbornen führt durch Diels-Alder-Addition und Eliminierung von Stickstoff zu einer beobachtbaren γ -Oxoketen-Zwischenstufe und schließlich zu einem einheitlichen 3,4-Dihydro- α -pyron³⁾. Beim Einsatz des reaktiveren 5-Phenyloxadiazinon-2-carbonsäure-methylesters 1b ist das Diels-Alder-Addukt isolierbar, zerfällt aber schon bei 20°C in ein stabiles γ -Oxoketen und ein β -Lacton¹⁾. Die Thermolyse des γ -Oxoketens liefert das gleiche β -Lacton und ein zehngliedriges, überbrücktes, α , β -ungesättigtes Enollacton⁴⁾. In eincr Kurzmitteilung hatten wir über analoge Reaktionen des dem Norbornen verwandten Bicyclo[2.1.1]hexens (2) berichtet^{4b}, dic wir jetzt ausführlich beschreiben und mit denen des Tricyclo-[3.3.0.0^{2,6}]oct-3-ens (3) vergleichen.

A. Reaktionen der Oxadiazinone 1a,b mit den Olefinen 2 und 3

Diphenyloxadiazinon 1a wurde mit den Olefinen 2 und 3 jeweils in Tetrachlormethan bei 80°C zur Reaktion gebracht und der Fortgang der Umsetzungen anhand der IR-Spektren überwacht. Für das intermediäre Auftreten der γ -Oxoketene 4 bzw. 5 sprach jeweils eine intensive Absorption bei 2100 cm⁻¹. Nach vollständigem Rückgang dieser Banden isolierten wir die 3,4-Dihydro- α -pyrone 6 und 7 mit 43 bzw. 49% Ausbeute.

Die NMR-Spektren von 6 und 7 beweisen, daß die Kohlenstoffgerüste der eingesetzten Olefine nicht verändert wurden. Aus den charakteristischen Kopplungskonstanten $J_{4,4a} = 7.1$ bzw. 6.9 Hz ergibt sich die *cis*-Anordnung der H-Atome am Heterocyclus. Sie ena, which have been investigated by means of line shape analyses of the temperature dependent ¹³C-NMR spectra. The interconvertion of the *cis*- and *trans*-lactone conformers (**11a** \rightleftharpoons **11b**), being present in a 1:2 ratio, proceeds with $\Delta H_{c,t}^{+} = 48.8 \text{ kJ mol}^{-1}$, whereas the racemization of the *trans*lactone enantiomers (**11b** \rightarrow **11b**') requires less activation ($\Delta H_{t,t}^{+} = 42.3 \text{ kJ mol}^{-1}$). The structure of *cis*-lactone **11a** has been established by an X-ray analysis.

manifestiert sich auch in den starken Abschirmungen, die eine der CH₂-Gruppen von 6 gegenüber der anderen und eines der H-Atome

Chem. Ber. 124 (1991) 1435-1444 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/0606-1435 \$ 3.50+.25/0

an C-6, -10 in 7 gegenüber dem anderen erfahren: 6, $\Delta\delta(6-H_{\beta}, 8-H_{syn}) = 1.34$, $\Delta\delta(6-H_{\alpha}, 8-H_{anti}) = 0.58$; 7, $\Delta\delta(6-H, 10-H) = 1.49$. Diese Unterschiede belegen die Nähe von C-8 in 6 und C-10 in 7 zur Phenylgruppe, deren Ringstrom die Hochfeldeffekte verursacht.

Wie früher anhand der Reaktionen anderer Olefine mit 1a geschildert³⁾, dürften obige Umsetzungen mit der Diels-Alder-Addition von 2 und 3 an 1a beginnen, der sich die rasche Eliminierung von molekularem Stickstoff im Zuge einer Diels-Alder-Cycloreversion anschließt. Dabei sollten zunächst Dihydropyryliumolat-Zwischenstufen der Typen 10 und 13 entstehen, die dann den Heterocyclus zu den γ -Oxoketenen 4 und 5 öffnen. Deren Übergänge in 6 und 7 könnten als intramolekulare Enreaktionen ablaufen oder als suprafaciale [1,5]-H-Wanderungen in den zunächst zurückgebildeten Dihydropyryliumolat-Zwischenstufen. Beide Prozesse erklärten die hohe Stercoselektivität³⁾.

Ein völlig anderes Ergebnis als im Falle von 1a hatte die Umsetzung von Phenyloxadiazinonester 1b mit 2, nämlich das neungliedrige, überbrückte, α , β -ungesättigte Enollacton 11 und das β -Lacton 12 (Konfiguration wahrscheinlich, aber nicht abgesichert) mit 38 bzw. 4% Ausbeute. Intermediär wurde das γ -Oxoketen 9 anhand der IR-Bande bei 2100 cm⁻¹ nachgewiesen. Abweichend von unseren Untersuchungen zu den Reaktionen von 1b mit Norbornen und Norbornadien¹⁰ versuchten wir nicht, das Primäraddukt 8 und das γ -Oxoketen 9 zu isolieren. Vielmehr erhitzten wir so lange, bis das zunächst auftretende 9 vollständig reagiert hatte.

Bezüglich der Reaktionsmechanismen dürfte gelten, was wir für die Umsetzungen von 1b mit Norbornen und Norbornadien vorgeschlagen haben^{1,4)}. Somit liegt als Zwischenstufe auf dem Weg von 8 nach 9 das Dihydropyryliumolat 10 nahe, aus dem ein Teil des β -Lactons 12 direkt entstehen sollte¹⁾. Der andere Teil geht wohl aus 9 hervor, entweder einstufig im Sinne einer intramolekularen [2 + 2]-Cycloaddition oder wieder über 10, das sich möglicherweise bei erhöhter Temperatur aus 9 im Rahmen eines Gleichgewichts zurückbildet. Die Neunringverbindung 11 ist eher das Resultat einer Retro-Claisen-Umlagerung von 9 als das der elektrocyclischen Ringerweiterung von 10^{4b}.

Beim Versuch, aus 3 und 1b das zu 11 analoge Enollacton 16 zu bereiten, stellten wir die ungewöhnliche Persistenz des γ -Oxoketens 15 fest, das sich schon nach 30 Minuten bei 80°C praktisch vollständig gebildet, aber nach 29 Tagen bei 80 °C kaum verändert hatte. Die eventuell mögliche Isolierung von 15 durch Kristallisation wie beim γ -Oxoketen aus Norbornen und 1 b¹ strebten wir nicht an, sondern arbeiteten chromatographisch auf, wobei mit 8% Ausbeute das gesättigte δ-Lacton 14 anfiel. Dieses könnte aus 3 und 15 in einer [2 + 2 + 2]-Cycloaddition hervorgehen oder in einer Diels-Alder-Reaktion aus 3 und dem Dihydropyryliumolat 13, das beim Zerfall des Diels-Alder-Addukts aus 3 und 1b Zwischenstufe ist und möglicherweise bei 80°C mit 15 im Gleichgewicht steht. Ein 2:1-Produkt wie 14 hatten wir früher aus 1b und überschüssigem Norbornen erhalten⁵⁾. Zu 16 kamen wir, wenn auch nur mit 4% Ausbeute, durch chromatographische Aufarbeitung des Reaktionsgemisches von 3 und 1b schon nach zwei Tagen bei 80°C.

Als Gründe für die geringe Ausbeute an 16 können wir nur Spekulationen anbieten, die nicht überprüft wurden, weil wir nur an 16 interessiert waren und der Zugang zu 3^{6} recht mühevoll ist. Daß nur wenig 14 anfiel, beruht auf der Umsetzung von 1b und 3 im Verhältnis nahe 1:1. Beim Langzeitversuch fanden wir 16 nicht. Möglicherweise deutet der Befund, daß sich das γ -Oxoketen 15 beim Erhitzen kaum verändert, auf ein Gleichgewicht zwischen 15 und 16 und eventuell cinem zu 12 analogen β -Lacton hin, das weitgehend auf der Seite von 15 liegt.

B. Die NMR-Spektren der α,β-ungesättigten Enollactone 11 und 16

Die Routine-NMR-Spektren von 11 sprechen durch ihre breiten Banden für einen dynamischen Effekt. Erst bei

+ 60 °C beobachtet man scharfe Signale, deren Zahl die C_s -Symmetrie und damit die Enantiotopie der beiden CH₂-Gruppen (C-9, -10) vorgeben. Daß es sich dabei um ein Mittelwertspektrum handelt, beweisen Messungen bei -70 °C, die zwei Signalsätze mit dem Intensitätsverhältnis 2:1 anzeigen (Abb. 1, Tab. 1, 2). Im ¹³C-NMR-Spektrum bei -70 °C findet man zweimal 15 Linien, aus denen bei + 60 °C insgesamt 14 hervorgehen. Offenbar liegt 11 in Form von zwei Isomeren vor, die auf der NMR-Zeitskala bei -70 °C nicht mehr rasch ineinander übergehen. Man hat es hier mit der Ester-Isomerie zu tun.

Offenkettige Ester bevorzugen weit überwiegend die trans-Konformation⁷⁾. So ist das trans-Konformer von Ameisensäuremethylester bei -83 °C in Dimethylformamid/[D₆]Aceton (1:1) um 9.0 kJ mol⁻¹ stabiler als das cis-Konformer, was einem Verhältnis von 99.7:0.3 entspricht^{8a}. Tauscht man den Methylrest gegen andere Gruppen aus, so kann dies zu weit größeren Anteilen am cis-Konformeren führen⁸⁾. Die cis-trans-Enthalpiedifferenz in flüssigem Essigsäure-methylester wird mit 17.5 kJ mol⁻¹ angegeben⁹⁾. In der Gasphase scheinen die *cis-trans*-Enthalpiedifferenzen etwa doppelt so groß zu sein¹⁰⁾ wie in Lösung.

In Lactonen genügend kleiner Ringgröße wird die *cis*-Konformation crzwungen. Nach Huisgen und Ott¹¹⁾ überwiegt in gesättigten ω -Lactonen ab dem Neunring die *trans*-Konformation. Für Octanolid (Neunring) hatten sie den Anteil am *cis*-Konformer auf 6-10% geschätzt, während er im Heptanolid (Achtring) schon 75% betragen soll. Qualitativ stimmt das mit den Ergebnissen von Kraftfeldrechnungen überein¹²⁾.

Die Charakterisierung der beiden Konformeren von 11 nahmen wir mit dem ¹H-NMR-Spektrum bei -70 °C anhand der Kopplungskonstanten $J_{1,2}$ und $J_{7,8}$ vor (Abb. 1). Während die Hauptkomponente Werte von 9.7 und 8.8 Hz aufweist, belaufen sich die der Nebenkomponente auf nur 4.4 und 4.3 Hz (Tab. 1B). Diese Unterschiede rühren von unterschiedlichen Interplanarwinkeln her. In der Tat messen im *cis*-Konformer 11a die Winkel zwischen den Ebenen durch H1,C1,C2/C1,C2,H2 (H5,C5,C4/C5,C4,H4 in Abb. 2) und H7,C7,C8/C7,C8,H8 (H8,C8,C7/C8,C7,H7) 61.9 bzw. 59.1°. Diese Werte liefert die Röntgenstrukturanalyse der Kristalle des *cis*-Konformers 11a, die aus einer Lösung von 11 in 2-Propanol erhalten wurden. Dagegen liegen, wie sich am Molekülmodell feststellen läßt, die Werte der entsprechenden Interplanarwinkel des *trans*-Konformers 11b nahe

Abb. 1. ¹H-NMR-Spektren von 11 bei -70 °C in CD₂Cl₂ (oben) und +60 °C in CDCl₃ (unten) bei 400 MHz mit Tetramethylsilan als internem Standard

Tab. 1. ¹H-NMR-Parameter der α,β-ungesättigten Enollactone **11** und **16** bei 400 MHz und verschiedenen Temperaturen (°C)

A. Ch	A. Chemische Verschiebungen (& Werte) und Multiplizitäten													
Nr.	Solvens	Temp.	1-H	2-H	7-H	8-H 9	9-H _{anti}	9-H _{syn}	10-H _{anti}	10-H _{syn}	OCH ₃	<i>о-</i> Н	т-Н р-Н	
11 ^{a)}	CDCl ₃	+60	3.27	6.57	6.89	3.05	2.77	2.48	2.77	2.48	3.72	7.47	7.32 7.27	
			tdtd	d	d	tdtd	dt	br.d	dt	br.d	s	m	m tt	
11a	CDCl ₃	-60	b)	6.47	6.93	b)	b)	1.78	2.49	b)	3.62	7.55	7.30-7.47	
				d	d			dd	đt		S	m	m	
11b	CDCl ₃	-60	3.42	6.85	7.07	3.09	b)	2.14 ^{c)}	b)	3.18 ^{c)}	3.92	7.55	7.30-7.47	
			≈qt	d	d	≈qt		breit		m	s	s	m	
11a	CD_2Cl_2	-70	d)	6.44	6.84	d)	d)	1.67	2.38	d)	3.57		7.22-7.42	
				d	d			dd	dt		S		m	
115	CD_2Cl_2	-70	3.33	6.81	6.98	3.00	d)	1.89 ^{c)}	d)	3.07 ^{c)}	3.78	•	7.22-7.42	
			≈qt	d	d	m		dt		m	s		m	
16 ^{e)}	CDCl ₃	+25	2.439	^{;)} 6.43	6.94	2.36	;) _	2.63	-	3.55	3.41	,	7.24-7.43	
	2		dd	d	d	dd		br.d		br.d	s		m	

^{a)} Die Zuordnung der Signale zu 1-, 2-, 7- und 8-H beruht auf der Annahme, daß 7-H bei tieferem Feld absorbieren sollte als 2-H, das den Charakter des β -Protons einer Enolester-Einheit hat. - ^{b)} 2.80-3.00 (m). - ^{c)} Die Zuordnung dieser Signale ist austauschbar. - ^{d)} 2.68-2.87 (m). - ^{e)} Die Positionsnummern stimmen nicht mit dem systematischen Namen überein, sondern sind denen von **11** angepaßt; 1.75-1.90 (m; 11-,12-H₂).

B. K	3. Kopplungskonstanten (Hz)										
Nr.	Solvens	Temp.	<i>J</i> _{1,2}	J _{1,8}	J _{1,9anti} a)	J _{1,9syn} b)	J _{7,8}	J _{8,9anti} c)	J _{8,9syn} d)	J _{9,9} e)	J _{9syn, 10syn}
11	CDCl ₃	+60	8.0	1.0	9.6	4.3	7.4	9.6	3.8	13.3 ^{f)}	f)
11a	CD_2Cl_2	-70	4.4	g)	7.9	>1.5	4.3	7.9	>1.5	10.5, 13.5	6.5
11b	CD_2Cl_2	-70	9.7	>1	9.6	6.5	8.8	g)	6.5	13.7	>1.5
16	CDCl ₃	+25	3.9	5.2	-	h)	3.9	-	h)	-	6.6

^{a)} Zugleich $J_{1,10anti}$. - ^{b)} Zugleich $J_{1,10syn}$. - ^{c)} Zugleich $J_{8,10anti}$. - ^{d)} Zugleich $J_{8,10syn}$. - ^{e)} Zugleich $J_{10,10}$. - ^{f)} Der Wert von 13.3 Hz ist der Dublettlinienabstand, der nur dann $J_{9,9} = J_{10,10}$ entspricht, wenn

 $J_{9syn,10syn}$ sehr klein ist. Dies scheint erfüllt zu sein, da auch $J_{1,8}$ mit 1.0 Hz sehr klein ausfällt. -

^{g)} Nicht ermittelt. - ^{h)} Nicht aufgelöst.

bei 0°. Die Gültigkeit der Karplus-Conroy-Beziehung vorausgesetzt, ordnen wir daher der Hauptkomponente in Lösung die *trans*-Lacton-Konformation 11b und der Nebenkomponente die *cis*-Form 11a zu. Im Vergleich zu Octan-

Abb. 2. Stercographische Projektion des Moleküls 11 a mit der Benennung der Atome. Sauerstoffatome sind schraffiert

olid bewirken also die beiden Doppelbindungen und die Methylenbrücke in 11 soviel Spannung, daß der Anteil der *cis*-Form auf immerhin ein Drittel angestiegen ist.

Vom Derivat 16 von 11 erhielten wir Routine-NMR-Spektren mit gut aufgelösten Signalen, woraus wir das starke Überwiegen eines Konformers schlossen. Die sechs ¹³C-NMR-Signale (Tab. 2) der Bicyclo[2.1.1]hexan-Einheit zeigen an, daß ein Enantiomerenpaar vorliegt, dessen Komponenten bei 25 °C auf der NMR-Zeitskala höchstens sehr langsam ineinander übergehen. Aufgrund der $J_{1,2}$ und $J_{7,8}$ in 11 entsprechenden Kopplungen (3.9 Hz, Tab. 1B) und der großen Differenz der chemischen Verschiebungen der C-9, -10 in 11 entsprechenden Atome ($\Delta \delta = 7.8$) ist 16 wie 11a ein *cis*-Lacton. Die Ethanobrücke in 16 fixiert eine starke Faltung des Vierrings, was offenbar das zu 16 gehörende *trans*-Lacton energetisch sehr ungünstig macht. Beim Übergang von 11a nach 11b fällt dagegen die freie Enthalpie etwas ab. Dies wird durch eine sehr flache, beinahe ebene

Tab. 2.	¹³ C-NMR-Chemische	Verschiebungen (δ-W	erte) und Multiplizitäte	n der	α,β -ungesättigten
Enollac	tone 11 und 16 bei 100	(11) und 50 (16) MH	z und verschiedenen Te	mpera	turen (°C)

Nr.	Solvens	Temp.	C-1, -8	C-2 ^{a)}	C-3	C-5	C-6	C-7 ^{a)}	C-9	C-10	CO ₂ CH ₃	ipso-C	<i>o</i> -C	m-C	p-C
11	CDCl ₃	+60	30.3, 32.2 d d	135.5 d	141.5 s	168.6 s	132.6 s	138.4 d	31.3 t	31.3 t	162.6, 52.2 s q	135.7 s	126.4 d	128.7 d	128.2 d
11a	CD_2Cl_2	-90	35.9, 37.0 d d	135.6 d	138.4 s	170.4 s	125.2 s	136.3 d	24.4 t	35.0 t	163.4, 53.3 s q	135.8 s	126.4 d	129.2 d	12 8.5 d
11b	CD ₂ Cl ₂	-90	27.1, 29.4 d d	138.5 d	141.7 s	169.8 s	134.6 s	143.0 d	33.0 ^{b)} t	31.6 ^{b)} t	1 62.8, 53.4 s q	135.9 s	126.7 d	1 29 .2 d	128.7 d
16 ^{c)}	CDCl ₃	+25	52.0, 53.9 d d	131.4 d	140.4 s	168.9 s	127.0 s	132.1 d	41.3 d	49.1 d	162.5, 52.0 s q	134.2 s	126.2 d	128.7 d	128.3 d

^{a)} Diese Zuordnung beruht auf der Annahme, daß C-7 bei tieferen Feld absorbieren sollte als C-2, das den Charakter des β -C-Atoms einer Enolester-Einheit hat. - ^{b)} Die Zuordnung dieser Signale ist austauschbar. - ^{c)} Die Positionsnummern stimmen nicht mit dem systematischen Namen überein, sondern sind denen von 11 angepaßt; 27.0, 28.3 (2 CH₂).

Geometrie des Vierrings ermöglicht, wie am Molekülmodell klar erkennbar ist.

Beide Konformationen von 11, 11a und 11b, sind chiral. Bei genügend tiefer Temperatur gehen auf der NMR-Zeitskala nicht nur 11a und 11b nicht mehr ineinander über, sondern es sind auch die Umwandlungen von 11a,b in ihre Enantiomeren 11 a', b' eingefroren, wie die jeweils 15 Linien der ¹³C-NMR-Spektren von 11a und 11b zeigen. Erst bei +60 °C wird durch das Mittelwertspektrum mit 14 Linien Achiralität vorgetäuscht. Die Betrachtung der CH₂-Signale bei verschiedenen Temperaturen lehrt, daß die Übergänge der Enantiomeren ineinander bei 11a,a' und 11b,b' recht unterschiedliche Aktivierungen erfordern. Während die beiden CH₂-Signale des *trans*-Konformers (11b) ($\delta = 31.6, 33.0$ bei -90° C) schon bei ca. -55° C ($\delta = 32.1$) koaleszieren, läßt sich der analoge Vorgang beim cis-Konformeren (11a) nicht erkennen. Vielmehr tritt ab -42°C eine Verbreiterung aller Linien ein, die schließlich zum Verschmelzen der Signale von 11 b mit denen von 11 a führt. Also geben die CH₂-Banden von 11b ($\delta = 32.1$) und 11a ($\delta = 24.4$, 35.0 bei

Chem. Ber. 124 (1991) 1435-1444

-90 °C) in die Mittelwertbande bei $\delta = 31.3$ bei +60 °C über.

Die Umwandlung von 11b in sein Enantiomeres 11b' erfolgt also ohne Einschaltung der *cis*-Konformeren 11a, a' und vollzieht sich durch gleichzeitige Rotation der Bindungen C-3-O-4 und C-5-C-6 um 180°. Am Modell erkennt man, daß dieser Prozeß die weitgehende Einebnung des Vierrings erfordert. Im Übergangszustand (11b") weist wohl das endocyclische Sauerstoffatom (O-4) ins Ringinnere und nicht die räumlich viel anspruchsvollere Carbonylgruppe.

Auf dem Weg zum Übergangszustand der *cis-trans*-Isomerisierung 11a, $a' \rightleftharpoons 11b, b'$ muß die für die Stabilisierungsenergie der Ester erforderliche coplanare oder nahezu coplanare Anordnung von C-3, O-4, C-5 und C-6 aufgegeben werden. Dies geschieht durch Drehung um die Bindung O-4-C-5. Gleichzeitig muß um die Bindung C-3-O-4 oder C-5-C-6 gedreht werden.

Die direkte Inversion des *cis*-Konformers (11a) in sein Enantiomer (11a') ist nur anhand eines Übergangszustandes mit coplanarer Anordnung der Ringglieder 1-8 vorstellbar, was von erheblichen Aufweitungen der Bindungswinkel begleitet sein müßte. Um Aufschluß darüber zu gewinnen, ob die Einstellung des Gleichgewichts $11a \rightleftharpoons 11a'$ ohne Einschaltung von 11b, b' abläuft, und um die Aktivierungsparameter der konformativen Prozesse zu ermitteln, haben wir Linienformanalysen der ¹³C-NMR-Spektren bei verschiedenen Temperaturen ausgeführt.

C. Linienformanalysen der temperaturabhängigen ¹³C-NMR-Spektren des α,β-ungesättigten Enollactons 11

Auf der Basis der für die Linienformanalyse ohne Spin-Spin-Wechselwirkung gültigen Formeln¹³⁾ wurde ein Pro-

Abb. 3. Experimentelle (jeweils unten) und simulierte Cyclobutan-Kohlenstoff-Signale (jeweils oben) der ¹³C-NMR-Spektren von 11 bei 100 MHz und verschiedenen Temperaturen in CD_2Cl_2 (-70 bis +27 °C und $CDCl_3$ (35-52 °C). Die zugehörigen Geschwindigkeitskonstanten finden sich in Tab. 3

gramm zur Simulation erstellt¹⁴). Da mindestens zwei, eventuell sogar drei dynamische Effekte in Betracht gezogen werden mußten, untersuchten wir zunächst Bereiche der Spektren, in denen sich nur eine Isomerisierung manifestiert. Für die *cis-trans*-Umwandlung $11a \rightleftharpoons 11b$ sind die Signale der quartären C-Atome gut geeignet, weil ihre effektive Linienbreite bei sehr langsamem Austausch wegen des Fehlens direkt gebundener Protonen wenig von der Qualität der Breitband-Entkopplung abhängt. Für die Simulation wurden die Linien der Carbonylgruppen ausgewählt, da hier die *cis-trans*-Signalpaare bei tiefen Temperaturen nicht zu nahe zusammenliegen und bei höheren keine Überlagerungen mit anderen Banden eintreten.

Das cis-trans-Verhältnis 11a:11b wurde von -90 bis -40 °C als temperaturunabhängig zu 1.0:2.0 ermittelt, und zwar mit guter Übereinstimmung aus ¹H- und ¹³C-NMR-Spektren. Als Linienbreiten benutzten wir die etwas differierenden Werte bei -90 °C (4.8, 6.0 Hz) und +8 °C (3.0 Hz); beide Fälle lieferten praktisch gleiche Geschwindigkeitskonstanten. Da die chemischen Verschiebungen für jeden Kern in verschiedener Weise einen Gang mit der Temperatur zeigen, ermittelten wir diese Abhängigkeiten durch Messungen im Gebiet des langsamen Austauschs und extrapolierten sie linear zu den höheren Temperaturen. Durch die Simulation der Linienformen der Carbonylgruppen-Signale (C-5, CO₂CH₃) ergaben sich Geschwindigkeitskonstanten, die sich praktisch nicht von denen in Tab. 3 unterscheiden.

Die wechselseitige Umwandlung der beiden *trans*-Enantiomere 11 b, b' äußert sich in der bei ca. -55° C eintretenden Koaleszenz der beiden CH₂-Signale bei $\delta = 31.6$ und 33.0 (-90°C). Dieser Vorgang vollzieht sich weitgehend unabhängig von der *cis-trans*-Isomerisierung 11a \rightleftharpoons 11b. Mit der bei -90°C gemessenen Linienbreite von 7.5 Hz wurden die Bandenformen von -90 bis -42°C simuliert, wobei sich Geschwindigkeitskonstanten ergaben, die von denen in Tab. 3 so gut wie nicht abweichen.

Mit den so gewonnenen Werten für die *trans-trans-* $(k_{t,l})$ und die *cis-trans-*Umwandlung $(k_{c,t})$ als Startparameter simulierten wir die Formen der Cyclobutan-Kohlenstoff-Signale von -70 bis +52°C (Abb. 3). Dabei mußten wieder Gänge der einzelnen Linien bei der Temperaturänderung berücksichtigt, d.h. im Gebiet des langsamen Austauschs ermittelt und auf den Bereich des schnellen extrapoliert werden. Die $\Delta\delta$ -Werte pro 10°C liegen zwischen -0.03 und +0.05 ppm. Bei -70 und -65°C erwies sich die Verwendung der experimentellen Linienbreite (4.5-7.5 Hz), ab -55°C der einheitlichen Linienbreite von 3.0 Hz als günstig.

Da es sich um einen Austausch von mehr als zwei Linien handelt, spielt die richtige Aufstellung der Austauschmatrix¹³⁾ die entscheidende Rolle. Wegen der acht Linien müssen 28 Geschwindigkeitskonstanten berücksichtigt werden, von denen jedoch die meisten Null sind, weil z. B. eine CH-Gruppe von 11a nur in die entsprechende CH-Gruppe von 11b und eine CH₂-Gruppe von 11a nur in eine der beiden CH₂-Gruppen von 11b übergehen können. Entsprechend den Liniennummern in Abb. 3 (vgl. Zuordnung in Tab. 2) wurden folgende Beziehungen festgelegt: $k_{1,6}$ = $k_{2,7} = k_{c,t}, k_{4,5} = k_{t,t}, k_{3,4} = k_{3,5} = 1/2 k_{c,t}, k_{4,8} = k_{5,8} =$ $1/2 k_{t,c} = 1/4 k_{c,t}$, alle anderen Austauschkonstanten wurden null gesetzt. Die Faktoren 1/2 und 1/4 folgen aus der Möglichkeit der Umwandlung einer CH2-Gruppe eines Konformeren in beide CH2-Gruppen des anderen bzw. aus dem Populationsunterschied der beiden Konformere. Die Festlegung von $k_{1.6} = k_{2.7} = k_{c.t}$ ist eine Frage der offenen

D 1441

Zuordnung dieser Signale und erfolgte aufgrund der Simulationsergebnisse. Mit $k_{1,6} = k_{2,7} = 0$ stimmen die berechneten mit den experimentellen Linienformen bei 35 und 44°C deutlich schlechter überein als mit der alternativen Wahl. Eines besonderen Kommentars bedarf auch der Wert $k_{3,8} = 0$, der den Austausch der beiden CH₂-Gruppen im *cis*-Konformeren 11a beschreibt, d.h. dieser Austausch ist sehr langsam, wenn er überhaupt stattfindet. Tatsächlich zeigen die Simulationen für das Spektrum bei -42°C für $k_{3,8} \leq 1/10 k_{c,t}$ keinen Unterschied mehr zum Fall mit $k_{3,8} =$ 0, der seinerseits das gemessene Spektrum sehr gut reproduziert. Bei $k_{3,8} > 1/10 k_{c,t}$ ergeben sich deutliche Abweichungen vom Experiment.

Auch die Vereinbarungen $k_{3,4} = k_{3,5}$ und $k_{4,8} = k_{5,8}$ erscheinen zunächst nicht selbstverständlich, beschreiben sie doch die gleich schnelle Bildung der *beiden* Enantiomere eines Konformers aus *einem* Enantiomer des anderen, was sicherlich nicht a priori feststeht. Darüber liefern die Daten aber keine Information, da der *trans-trans-*Übergang (11b \Rightarrow 11b') erheblich schneller (Faktor 25 bei -42°C) abläuft als der *cis-trans-*Austausch. Daher lassen sich mit obigen Eingaben und auch mit $k_{3,4} = k_{c,1}$, $k_{5,8} = 1/2 k_{c,1}$ und $k_{3,5} = k_{4,8} = 0$ sowie mit $k_{3,5} = k_{c,1}$, $k_{4,8} = 1/2 k_{c,1}$ und $k_{3,4} = k_{5,8} = 0$ die experimentellen Spektren gleich gut simulieren.

Tab. 3. Geschwindigkeitskonstanten für die Einstellung der Konformeren- und Enantiomerengleichgewichte bei 11 in CD_2Cl_2 (-70 bis 27 °C) und $CDCl_3$ (35 - 52 °C)

		-	
T [°C]	k _{t,t} [s ⁻¹] ^{a)}	$k_{c,t} [s^{-1}]^{a)}$	k _{c,c} [s ⁻¹]
-70	(33)	(1)	
-65	125	2.5	
-55	365	10	
-42	1000	40	≤4
-30	3600	160	
-21	9000	380	
-11	(18000)	(1000)	
0	(39000)	(2400)	
8	(45000)	(2700)	
18	(70000)	(5000)	
27	(150000)	(13000)	
35	(250000)	(25000)	
44	(500000)	(40000)	
52	(900000)	(80000)	

^{a)}Die eingeklammerten Werte sind wegen des ungünstigen Signal-zu-Rausch-Verhältnisses mit größeren Fehlern behaftet als die nicht eingeklammerten.

Aus den in Tab. 3 zusammengestellten Geschwindigkeitskonstanten errechneten wir mit Hilfe der nicht eingeklammerten Werte die Aktivierungsparameter, wobei sich die freien Aktivierungsenthalpien als temperaturunabhängig erwiesen. Damit haben die Aktivierungsentropien $\Delta S_{t,t}^+$ und $\Delta S_{c,t}^+$ Werte, die nahe bei 0 J mol⁻¹ K⁻¹ liegen, was für derartige intramolekulare Prozesse der Erwartung entspricht. Es ergeben sich in der Einheit kJ mol⁻¹:

$\Delta G_{t,t}^{+} (\approx \Delta H_{t,t}^{+}) = 42.3 \pm 1.0$	$\Delta G_{c,i}^+ (\approx \Delta H_{c,i}^+) = 48.8 \pm 1.0$
$\Delta G_{c,c}^{*}$ (bei -42° C) ≥ 53.4	$\Delta G_{t,c}^{+} \approx \Delta H_{t,c}^{+}) = 50.2 \pm 1.0$

Wenn die eingeklammerten, mit einem größeren Fehler behafteten Geschwindigkeitskonstanten der Tab. 3 mitbenutzt werden, belaufen sich $\Delta G_{t,t}^+$ und $\Delta G_{c,t}^+$ auf 42.9 \pm 1.8 bzw. 49.3 \pm 1.8 kJ mol⁻¹, lassen aber auch jetzt keine Temperaturabhängigkeit erkennen. Die angegebenen Fehlergrenzen beruhen hauptsächlich auf der relativ großen Unsicherheit bei der Temperaturmessung (siehe Exp. Teil).

Im Vergleich mit den Aktivierungsparametern einfacher Modelle liefern die Werte von 11 interessante Aussagen. Die $\Delta G_{c,i}^+$ -Werte von einfachen Ameisensäureestern in Lösung wurden zu ca. 35, die ΔG_{tc}^{\pm} -Werte zu ca. 42 kJ mol⁻¹ bestimmt⁸⁾. Bei reinem Essigsäure-methylester fand man $\Delta H_{c,t}^{\pm} = 24.7 \text{ und } \Delta H_{t,c}^{\pm} = 42.3 \text{ kJ mol}^{-1 \text{ 9}}$. In der Gasphase schätzte man die trans-cis-Barriere für Ameisensäure-methylester auf $40-60 \text{ kJ mol}^{-1}$. Nach ab-initio-Rechnungen mit großen Basissätzen und Korrekturen für die Elektronenkorrelation¹⁵⁾, die am ehesten zu experimentellen Werten in der Gasphase passen, liegen bei Ameisensäure- und Essigsäure-methylester die cis-Konformeren um 31.8 bzw. 43.1 kJ mol⁻¹ über den trans-Konformeren und die Übergangszustände 20.9 bzw. 13.0 kJ mol⁻¹ über den *cis*-Konformeren. Die Barrieren in der Gasphase scheinen also allgemein etwas höher zu sein als die in Lösung.

Wie diese Vergleiche zeigen, ist der Übergangszustand für die *cis-trans*-Isomerisierung von 11 etwas energiereicher als der von einfachen Estern in Lösung. Offenbar benötigt 11 mehr an Aktivierung, als die Aufhebung der Ester-"Resonanz"¹⁶⁾ allein erwarten läßt. Dies ist erstaunlich, da man aufgrund der Starrheit von 11 in beiden Konformationen eine Störung der Ester-"Resonanz" wegen einer eventuellen Abweichung von der coplanaren Lage von C-3, O-4, C-5 und C-6 (C-9, O-1, C-2 und C-3 in Abb. 2) vermuten könnte. Tatsächlich zeigt die Röntgenstrukturanalyse von 11a aber nur einen Torsionswinkel um O-4–C-5 (O-1–C-2 in Abb. 2) von 2.6°. Wahrscheinlich leidet der Übergangszustand zwischen 11a und 11b unter noch erheblicherer genereller Winkelspannung als 11a und 11b selbst.

Die Cyclobutan-Einheit nimmt dem zugrundeliegenden Neunring von 11 viel von dessen eigentlicher Flexibilität, so daß der Vergleich von 11 mit einem achtgliedrigen α,β -ungesättigten Enollacton gerechtfertigt erscheint. In der Tat beläuft sich ΔG^+ für die Inversion des Achtrings im Dibenzoderivat 17 bei der Koaleszenztemperatur auf ca. 42 kJ mol⁻¹, wobei der Übergangszustand zwischen den *cis*-Lacton-Enantiomeren eine dem *trans*-Lacton ähnliche Struktur haben könnte¹⁷⁾.

Angesichts der relativ schwierigen *cis-trans*-Isomerisierung bei 11 überrascht es, daß die Rotation der COO-Gruppe, d.h. der Übergang 11 b \rightleftharpoons 11b', beträchtlich leichter erfolgt. Diese Racemisierung kann hinsichtlich der Dynamik mit den Racemisierungen von *trans*-Cyclocten, -nonen und -decen verglichen werden, wo jeweils die *trans*-CH=CH-Einheit rotiert. Dort betragen die ΔH^+ -Werte 145.3¹³⁾, 81.2¹⁹⁾ bzw. 50.2²⁰⁾ kJ mol⁻¹. Selbst im Zehnring mit acht CH₂-Gruppen rotiert die Vinylen-Einheit noch weniger leicht als die COO-Gruppe in 11 b, b', deren endocyclische CO-Bindung dabei nicht oder nur wenig verdrillt werden darf und die somit einer Vinylen-Einheit gleicht. Dies macht deutlich, daß das endocyclische Sauerstoffatom der Lactongruppe wesentlich kleiner ist als eine CH-Gruppe. Im Übergangszustand weist daher O-4 wohl ins Ringinnere, während das Carbonyl-O-Atom nach außen steht (11b"). Diese Struktur sollte C.-Symmetrie besitzen und ist wesentlich günstiger als die C_s -symmetrische Form, die als Übergangszustand bei der direkten Racemisierung der cis-Lactone 11a, a' durchlaufen werden müßte. Letztere Form leidet zweifellos unter der gleichsinnigen Orientierung der CO-Bindungsdipole, die als Ursache für den energetischen Nachteil von cis- gegenüber trans-Estern betrachtet wird^{7,11,15}). Dieser Nachteil gilt auch für 11a selbst. In Übereinstimmung damit liegt das Verhältnis 11a: 11b im 9:1-Gemisch aus CS2 und C₆D₆ (unpolarcs Solvens) bei 1:8, was mit 1:2 in CD₂Cl₂ (polares Solvens) zu vergleichen ist.

Durch die weitere Überbrückung des Vierrings mit zwei Methylengruppen in 16 geht die 11 aufgrund der Beweglichkeit des Vierrings noch verbleibende Flexibilität vollends verloren. Die starke Faltung des Vierrings ähnlich 11a (Interplanarwinkel 150.4°) ist in 16 fixiert. Dynamische Phänomene sind daher in dessen Routine-NMR-Spektren nicht mehr beobachtbar. Die Racemisierung von 16 (cis-cis-Umwandlung) erfolgt, wenn überhaupt, viel langsamer als im vergleichbaren Achtring-Modell 17, offenbar weil die Konformation mit *trans*-Lactongruppe sehr energiereich ist.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie finanziell unterstützt, von der Bayer AG und der Degussa AG durch Chemikalienspenden. A.K. dankt der Stiftung Stipendien Fonds für die Förderung (1987-1988).

Experimenteller Teil

Geräte: Lit.1).

 $(4\alpha, 4\alpha\beta, 5\alpha, 7\alpha) - 3, 4, 4\alpha, 5, 6, 7$ -Hexahydro-1, 4-diphenyl-3-oxo-5, 7methanocyclopenta/c/pyran (6): Die gelbe Suspension von 1.25 g (4.99 mmol) 2,5-Diphenyl-6H-1,3,4-oxadiazin-6-on (1a)²¹⁾ in 10 ml trockenem Tetrachlormethan und 500 mg (6.24 mmol) Bicyclo [2.1.1] hex-2-en (2)²²⁾ erhitzte man unter Stickstoff so lange unter Rückfluß, bis die zunächst auftretende IR-Bande der Lösung bei 2100 cm^{-t} nicht mehr beobachtbar war (114 h). Beim Kühlen der Lösung auf - 10°C bildete sich dann ein farbloser Niederschlag, der isoliert und aus 2-Propanol umkristallisicrt wurde: 650 mg (43%) 6, Schmp. $206 - 208 \degree C. - IR$ (KBr): $\tilde{v} = 1746 \text{ cm}^{-1}$ (C=O). - MS (70 eV): m/z (%) = 302 (20) [M⁺], 274 (24), 183 (15), 118 (51), 105 (100), 91 (19), 90 (21), 77 (60). - ¹H-NMR (CDCl₃): $\delta =$ 0.07 (dd, $J_{6\beta,8syn} = 10.6$, $J_{8,8} = 7.3$ Hz; 8-H_{syn}), 1.37 (dq, $J_{4a,8anti} =$ $J_{5,8anti} = J_{7,8anti} = 2.5$ Hz; 8-H_{anti}), 1.41 (dd, $J_{6,6} = 6.7$ Hz; 6-H_β), 1.95 (dt, $J_{5,6\alpha} = J_{6\alpha,7} = 2.8$ Hz; 6-H_{α}), 2.66 (dtd, $J_{5,7} = 6.4$, $J_{4a,5} =$ 1.1 Hz; 5-H), 3.28 (dt; 7-H), 3.32 (br. d, $J_{4,4a} = 7.1$ Hz; 4a-H), 4.44 (d; 4-H), 7.04 (2H), 7.17-7.26 (3H), 7.29-7.47 (3H), 7.64 (2H) $(2 C_6 H_5)$. - ¹³C-NMR (CDCl₃): $\delta = 38.9, 41.6$ (jeweils t; C-6, -8), 40.0, 42.5, 44.4, 48.7 (jeweils d; C-4,-4a,-5,-7), 122.7 (s; C-7a), 126.3, 128.4, 128.5, 128.8 (jeweils d; 2 o-, m-C), 127.5, 128.3 (jeweils d; 2 p-C), 133.1, 134.1 (jeweils s; 2 ipso-C), 140.9 (s; C-1), 169.9 (s; C-3).

C21H18O2 (302.4) Ber. C 83.42 H 6.00 Gef. C 83.36 H 6.17

 $(4\alpha,4a\beta,5\alpha,6\alpha,7\alpha)$ -3,4,4a,5,6,7-Hexahydro-1,4-diphenyl-3-oxo-6,5,7-(propanylyliden)cyclopenta[c]pyran (7): 1.00 g (4.00 mmol) 1a und 500 mg (4.71 mmol) Tricyclo[3.3.0.0^{2,6}]octen⁶⁾ (3) wurden bei 80 °C unter Stickstoff in 10 ml Tetrachlormethan so lange gerührt, bis die zunächst auftretende IR-Bande der Lösung bei 2100 cm⁻¹ nicht mehr beobachtbar war (74 h). Beim Kühlen der Lösung auf -10 °C bildete sich cin farbloser Niederschlag, der isoliert und aus wenig Methanol umkristallisiert wurde: 645 mg (49%) 7, Schmp. 211-212 °C. – IR (KBr): $\tilde{v} = 1749$ cm⁻¹ (C=O). – MS (70 eV): m/z (%) = 328 (21) [M⁺], 300 (19), 195 (17), 167 (15), 118 (17), 105 (100), 91 (17), 90 (12), 77 (49), 67 (14). – ¹H-NMR (CDCl₃): $\delta = 0.88$ (dt, $J_{6,10} = 6.9$, $J_{9,10} = 1.3$ Hz; 10-H), 1.37–1.83 (m; 8-9-H₂), 2.02 (dd, $J_{5,7} = 6.9$, $J_{4a,5} = 0.7$ Hz; 5-H), 2.37 (dt, $J_{6,8} = 1.3$ Hz; 6-H), 2.68 (d; 7-H), 3.51 (br. d, $J_{4,4a} = 6.9$ Hz; 4a-H), 4.34 (d; 4-H), 7.02 (2H), 7.17–7.27 (3H), 7.27–7.47 (3H), 7.63 (2H) (2 C₆H₅). – ¹³C-NMR (CDCl₃): $\delta = 23.4$, 25.4 (jeweils t; C-8,-9), 44.0, 48.9, 50.3, 52.4, 52.9, 54.3 (jeweils d; 2 *o*-, *m*-C), 127.5, 128.2 (jeweils d; 2 *p*-C), 133.2, 134.7 (jeweils s; 2 *ipso*-C), 140.9 (s; C-1), 170.2 (s; C-3). C₂₃H₂₀O₂ (328.4) Ber. C 84.12 H 6.12 Gef. C 83.99 H 6.08

5-Oxo-6-phenyl-4-oxabicyclo[6.1.1]deca-2,6-dien-3-carbonsäuremethylester (11) und $(1\alpha,2\beta,3\alpha,6\alpha,7\beta,8\alpha)$ -5-Oxo-6-phenyl-4-oxatetracyclo[6.1.1.0^{2.7}.0^{3.6}]decan-3-carbonsäure-methylester (12): Die gelbe Suspension von 1.00 g (4.31 mmol) 6-Oxo-5-phenyl-6H-1,3,4oxadiazin-2-carbonsäure-methylester (1b)¹⁾ in 10 ml trockenem Tetrachlormethan und 380 mg (4.74 mmol) Bicyclo[2.1.1]hex-2-en (2) erhitzte man unter Stickstoff so lange unter Rückfluß, bis die zunächst auftretende IR-Bande der Lösung bei 2100 cm⁻¹ nicht mehr beobachtbar war (43 h). Nach dem Abkühlen engte man i. Vak. ein und chromatographierte das zurückbleibende Öl (Kieselgel, Petroleumbenzin/Essigester 4:1). Zuerst wurde 12 und dann 11 eluiert. Nach Verdampfen des Solvens i. Vak. brachte man die Fraktionen mit Methanol zur Kristallisation.

11: 465 mg (38%), farblose Kristalle mit Schmp. 76–77°C. – IR (KBr): $\tilde{v} = 1747 \text{ cm}^{-1}$, 1723 (C=O), 1653 (C=C). – MS (70 eV): m/z (%) = 284 (26) [M⁺], 218 (19), 197 (22), 157 (35), 129 (100), 128 (76), 127 (31), 102 (21), 91 (29). – ¹H-NMR: Tab. 1. – ¹³C-NMR: Tab. 2.

12: 45 mg (4%), farblose Kristalle mit Schmp. $115-116^{\circ}$ C. – IR (KBr): $\tilde{v} = 1828 \text{ cm}^{-1}$ (β-Lacton-C = O), 1732 (Ester-C = O). – MS (70 eV): m/z (%) = 284 (21) [M⁺], 197 (40), 181 (65), 179 (45), 165 (45), 157 (49), 129 (100), 128 (72), 115 (53), 91 (84), 77 (51). – ¹H-NMR (CDCl₃): $\delta = 1.02$ (dd, $J_{9B,10syn} = 10.5$, $J_{9,9} = 6.8$ Hz; 9-H_β), 1.15 (dd, $J_{10,10} = 8.2$ Hz; 10-H_{syn}), 1.51 (dtt, $J_{1,10anti} = J_{8,10anti} = 3.1$, $J_{2,10anti} = J_{7,10anti} = 1.0$ Hz; 10-H_{anti}), 1.81 (dt, $J_{1,9\alpha} = J_{8,9\alpha} = 2.5$ Hz; 9-H_α), 2.78, 2.86 (jeweils dq, $J_{1,8} = 5.7$, $J_{1,2} = J_{7,8} = 2.4$ Hz; 1-,8-H), 3.23, 3.40 (jeweils ddd, $J_{2,7} = 5.8$ Hz; 2-,7-H), 3.90 (s; CH₃), 7.20 (m; *o*-H), 7.28 – 7.40 (m; *m*-,*p*-H). – ¹³C NMR (CDCl₃): $\delta = 31.6$ (t; C-10), 39.9 (t; C-9), 39.5, 40.2 (jeweils d; C-1,-8), 42.3, 47.9 (jeweils d; C-2,-7), 52.7 (q; CH₃), 75.5 (s; C-6), 84.4 (s; C-3), 126.5 (d; *o*-C), 128.2 (d; *p*-C), 128.8 (d; *m*-C), 130.5 (s; *ipso*-C), 166.2 (s; C-5), 170.4 (s; CO₂CH₃).

Kristall- und Molekülstruktur des cis-Lactons 11a: Kristallisation aus 2-Propanol ergab farblose Platten, Kristallgröße 0.7 × 1.0 × 0.5 mm, C₁₇H₁₆O₄, Molmasse 284.32 g · mol⁻¹. Kristallsystem triklin, Raumgruppe PĪ, a = 909.4(2), b = 956.0(2), c = 903.9(2) pm, $a = 74.87(2)^{\circ}$, $\beta = 108.42(2)^{\circ}$, $\gamma = 105.50(2)^{\circ}$, $V = 705.0(3) \cdot 10^{6}$ pm³, Z = 2, d_{ber} , = 1.339 Mg · m⁻³. Vierkreis-Diffraktometer Syntex P3, Mo-K₄-Strahlung, Graphitmonochromator, ω -scan, $2\Theta_{max} = 55^{\circ}$, h = 0 bis 11, k = -12 bis 11, l = -11 bis 11. Unabhängige Reflexc: 3087, davon beobachtet $[F > 3\sigma(F)]$: 2918, linearer Absorptionskoeffizient: 0.09 mm⁻¹.

Lösungsmethode (SHELXTL²³⁾): Direkte Methoden. Verfeinerung durch "block-diagonal least squares". Die Positionen der Wasserstoffatome wurden berechnet und isotrop bei den Verfei-

Tab. 4. Ortsparameter [$\times 10^4$] und isotrope Temperaturkoeffizien-
ten $[pm^2 \cdot 10^{-1}]$	(Standardabweichungen) von 11a

	x	Ŷ	Z	U
0(1)	1643(1)	5989(1)	7830(1)	48(1)
0(2)	2351(2)	9391(1)	7565(2)	56(1)
C(2)	2764(2)	8231(2)	8128(2)	41(1)
C(3)	4412(2)	8106(2)	9106(2)	41(1)
C(4)	4786(2)	7693(2)	10680(2)	49(1)
C(5)	3808(2)	7130(2)	11852(2)	55(1)
C(6)	1985(2)	6772(2)	11265(2)	56(1)
C(7)	2064(2)	5174(2)	11289(2)	54(1)
C(8)	2073(2)	4777(2)	9794(2)	50(1)
C(9)	1926(2)	5549(2)	8331(2)	44(1)
C(10)	3735(2)	5438(3)	12466(2)	62(1)
C(31)	5629(2)	8586(2)	8197(2)	41(1)
C(32)	5271(2)	8359(2)	6651(2)	51(1)
C(33)	6425(3)	8757(3)	5841(2)	63(1)
C(34)	7957(2)	9363(3)	6549(3)	65(1)
ር(35)	8329(2)	9608(3)	8073(3)	66(1)
C(36)	7183(2)	9239(2)	8888(2)	55(1)
C(90)	1844(2)	4955(2)	6927(2)	46(1)
0(90)	1948(2)	5705(2)	5663(2)	62(1)
0(91)	1617(2)	3473(1)	7255(2)	54(1)
C(92)	1457(3)	2791(2)	5950(3)	65(1)

nerungen berücksichtigt. Parameter/ F_o -Verhältnis: 15.4; R = 0.046, $R_w = 0.051$. Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52576 und von Lit.^{4b)} einschließlich der dortigen Autorennamen angefordert werden.

 $(1\alpha, 2\alpha, 3\alpha, 3a\beta, 4\alpha, 4a\beta, 5\alpha, 6\alpha, 7\alpha, 7a\beta, 8\alpha, 8a\beta)$ -Dodecahydro-10-oxo-8-phenyl-4,8-(epoxymethano)-2,1,3:6,5,7-di(propanylyliden)-s-indacen-4-carbonsäure-methylester (14): 1.00 g (4.31 mmol) 1b und 500 mg (4.71 mmol) 3 wurden in 10 ml trockenem Tetrachlormethan unter Stickstoff bei 80°C gerührt. Bereits nach 30 min zeigte das IR-Spektrum der Lösung eine intensive Bande bei 2100 cm⁻¹ (15). Ihre Intensität änderte sich durch 29tägiges Erhitzen auf 80°C nur unwesentlich. Man engte i. Vak. ein und chromatographierte den braungelben öligen Rückstand (Kieselgel, Petroleumbenzin/Essigester 4:1). Nach Verdampfen des Solvens i. Vak. versetzte man die einzelnen Fraktionen mit wenig Methanol, wobei 165 mg (8%) 14 als farblose Kristalle mit Schmp. 299-300°C anfielen. - IR (KBr): $\tilde{v} = 1750 \text{ cm}^{-1}$ (C=O). – MS (70 eV): m/z (%) = 416 (46) [M⁺], 357 (45), 195 (35), 167 (36), 165 (33), 115 (45), 105 (100), 91 (91), 79 (70), 78 (32), 77 (36), 67 (79), 41 (34). - ¹H-NMR (CDCl₃): $\delta = 1.44 - 1.60, 1.65 - 1.82$ (jeweils m; 11-,12-H₂), 1.90 (br. s; 1-,3-H), 2.01, 2.79 (jeweils dt, $J_{2,13} = 7.2$, $J_{2,11} = J_{12,13} = 1.3$ Hz; 2-,13-H), 2.98, 3.05 (jeweils d, $J_{3a,8a} = 9.2$ Hz; 3a-,8a-H), 3.85 (s; CH₃), 7.26 (m; p-H), 7.36 (m; m-H), 7.55 (m; o-H). - ¹³C NMR (CDCl₃): $\delta = 21.7, 25.7$ (jeweils t; C-11,14, C-12,15), 43.0, 47.7, 49.1, 51.2, 52.7, 54.9 (jeweils d; C-1,7, C-2,6, C-3,5, C-3a,4a, C-7a,8a, C-13,16), 52.2 (s und q; C-8, CH₃), 85.4 (s; C-4), 127.1 (d; p-C), 127.8 (d; m-C), 128.6 (d, o-C), 137.1 (s; ipso-C), 170.0 (s; CO₂CH₃), 174.5 (s; C-10).

C₂₇H₂₈O₄ (416.5) Ber. C 77.86 H 6.78 Gcf. C 77.52 H 6.79

6-Oxo-7-phenyl-5-oxatricyclo[7.3.0.0^{2.10}]dodeca-3,7-dien-4-carbonsäure-methylester (16): 1.00 g (4.31 mmol) 1b und 455 mg (4.29 mmol) 3 wurden wie bei der Darstellung von 14 umgesetzt. Die Aufarbeitung erfolgte aber schon nach 42 h. Durch Blitzchromatographie (Kieselgel, Petroleumbenzin/Essigester 6:1) und Behandlung des eingeengten Eluats mit wenig Methanol wurden 50 mg (4%) 16 als farblose Kristalle mit Schmp. 148-149 °C erhalten. - IR (KBr): $\tilde{v} = 1755 \text{ cm}^{-1}$, 1728 (C=O), 1660 (C=C). – MS (70 eV): m/z (%) = 310 (32) [M⁺], 282 (39), 223 (43), 195 (46), 167 (43), 165 (40), 142 (72), 141 (86), 115 (100), 105 (39), 91 (69), 77 (44), 67 (67), 53 (40). - ¹H-NMR: Tab. 1. - ¹³C-NMR: Tab. 2.

C₁₉H₁₈O₄ (310.4) Ber. C 73.53 H 5.85 Gef. C 73.83 H 5.89

Experimentelles zur Linienformanylse des temperaturabhängigen ¹³C-NMR-Spektren von 11: Die Spektren wurden mit einem Bruker-Gerät WM 400 bei 100.6 MHz unter WALTZ-Entkopplung mit 16 K Datenpunkten ohne Wartezeit zwischen den Akkumulationen gemessen. Vor der Fourier-Transformation wurde die Zahl der Datenpunkte verdoppelt und mit Linienbreite = 1.5 Hz exponentiell multipliziert. Die digitale Auflösung betrug dann 1.52 Hz/Punkt.

Die Temperatur der jeweiligen Messung wurde mittels einer Probe aus CCl₄/(CD₃)₂CO (1:1) kalibriert²⁴⁾. Die in Lit.²⁴⁾ angegebene Formel wurde der unterschiedlichen Meßfrequenz angepaßt. Aufgrund der digitalen Auflösung lag die Genauigkeit bei ± 4 K. Die ermittelten Werte stimmten mit der Anzeige des Gerätes gut überein.

CAS-Registry-Nummern

1a: 63617-45-8 / 1b: 98171-26-7 / 2: 822-41-3 / 3: 15774-53-5 / 6: 115410-90-7 / 7: 132911-10-5 / 11: 132911-11-6 / 12: 132911-12-7 / 14: 132911-13-8 / 15: 132911-14-9 / 16: 132911-15-0

- ¹⁾ 9. Mitteilung: M. Christl, U. Lanzendörfer, M. M. Grötsch, E. Ditterich, J. Hegmann, Chem. Ber. 123 (1990) 2031.
- ²⁾ Professor Siegfried Hünig zum 70. Geburtstag gewidmet.
 ³⁾ M. Christl, U. Lanzendörfer, J. Hegmann, K. Peters, E.-M. Peters, H. G. von Schnering, Chem. Ber. 118 (1985) 2940.

- ^{4) 4a)} J. Hegmann, M. Christl, K. Peters, E.-M. Peters, H. G. von Schnering, *Tetrahedron Lett.* 28 (1987) 6429. ^{4b)} M. Christl, J. Hegmann, H. Reuchlein, K. Peters, E.-M. Peters, H. G. von Schnering, Tetrahedron Lett. 28 (1987) 6433.
- ⁵⁾ M. Christl, U. Lanzendörfer, M. M. Grötsch, J. Hegmann, Angew.Chem. 97 (1985) 888; Angew. Chem. Int. Ed. Engl. 24 (1985) 886.
- ⁶⁾ J. Meinwald, B. E. Kaplan, J. Am. Chem. Soc. 89 (1967) 2611; D. N. Schmidt, Ph. D. Thesis, Cornell University, 1970.
- ⁷⁾ O. Exner in *The Chemistry of Double-Bonded Functional Groups* (S. Patai, Hrsg.), S. 1, Wiley, London 1977.
 ⁸⁾ ^{8a)} T. B. Grindley, *Tetrahedron Lett.* 23 (1982) 1757. ^{8b)} H.
- Mark, T. Baker, E. A. Noe, J. Am. Chem. Soc. 111 (1989) 6551.
- ⁹⁾ J. Bailey, A. M. North, Trans. Faraday Soc. 64 (1968) 1499.
- ¹⁰ C. E. Blom, Hs. H. Günthard, *Chem. Phys. Lett.* **84** (1981) 267. ¹¹ R. Huisgen, H. Ott, *Tetrahedron* **6** (1959) 253.
- ¹²⁾ N. L. Allinger, Pure Appl. Chem. 54 (1982) 2515.
- ¹³⁾ G. Binsch, Top. Stereochem. 3 (1968) 97; G. Binsch in Dynamic Nuclear Magnetic Resonance Spectroscopy (L. M. Jackman, F. A. Cotton, Hrsg.), S. 45, Academic Press, New York 1975.
- 14) A. Kraft, Dissertation, Univ. Würzburg, 1989.
- ¹⁵⁾ K. B. Wiberg, K. E. Laidig, J. Am. Chem. Soc. 109 (1987) 5935.
 ¹⁶⁾ Die Ursache der Ester-"Resonanz" ist in Lit.¹⁵⁾ ausführlich dis-
- kutiert.
- ¹⁷⁾ W. D. Ollis, J. F. Stoddart, J. Chem. Soc., Chem. Commun. 1973, 571
- ^{571.}
 ¹⁸⁾ A. C. Cope, B. A. Pawson, J. Am. Chem. Soc. 87 (1965) 3649.
 ¹⁹⁾ A. C. Cope, K. Banholzer, H. Keller, B. A. Pawson, J. J. Whang, H. J. S. Winkler, J. Am. Chem. Soc. 87 (1965) 3644.
 ²⁰⁾ C. D. D. Distanto J. Am. Chem. Soc. 87 (1965) 3644.
- ²⁰⁾ G. Binsch, J. D. Roberts, J. Am. Chem. Soc. 87 (1965) 5157; E. A. Noe, R. C. Wheland, E. S. Glazer, J. D. Roberts *ibid*. 94 (1972) 3488.
- ²¹⁾ W. Steglich, E. Buschmann, G. Gansen, L. Wilschowitz, Synthesis 1977, 252
- ²²⁾ J. Meinwald, F. Uno, J. Am. Chem. Soc. 90 (1968) 800; W. Trautmann, Dissertation, Univ. Karlsruhe, 1976.
- ²³⁾ G. M. Sheldrick, An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data, Univ. Göttingen, 1983.
- ²⁴⁾ J. J. Led, S. B. Petersen, J. Magn. Reson. 32 (1978) 1.

[423/90]